Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both the effectiveness and efficiency of the proposed FedMN over the baselines.
translated by 谷歌翻译
在过去几年中,已经提出了多语言预训练的语言模型(PLMS)的激增,以实现许多交叉曲线下游任务的最先进的性能。但是,了解为什么多语言PLMS表现良好仍然是一个开放域。例如,目前尚不清楚多语言PLM是否揭示了不同语言的一致令牌归因。要解决此问题,请在本文中提出了令牌归因(CCTA)评估框架的交叉致新一致性。三个下游任务中的广泛实验表明,多语言PLMS为多语素同义词分配了显着不同的归因。此外,我们有以下观察结果:1)当它用于培训PLMS时,西班牙语在不同语言中实现了最常见的令牌归属;2)令牌归属的一致性与下游任务中的性能强烈相关。
translated by 谷歌翻译
我们通过纳入通用依赖性(UD)的句法特征来瞄准直接零射击设置中的跨语言机器阅读理解(MRC)的任务,以及我们使用的关键功能是每个句子中的语法关系。虽然以前的工作已经证明了有效的语法引导MRC模型,但我们建议采用句子际句法关系,除了基本的句子关系外,还可以进一步利用MRC任务的多句子输入中的句法依赖性。在我们的方法中,我们构建了句子间依赖图(ISDG)连接依赖树以形成横跨句子的全局句法关系。然后,我们提出了编码全局依赖关系图的ISDG编码器,通过明确地通过一个跳和多跳依赖性路径来解决句子间关系。三个多语言MRC数据集(XQUAD,MLQA,Tydiqa-Goldp)的实验表明,我们仅对英语培训的编码器能够在涵盖8种语言的所有14个测试集中提高零射性能,最高可达3.8 F1 / 5.2 EM平均改善,以及某些语言的5.2 F1 / 11.2 em。进一步的分析表明,改进可以归因于跨语言上一致的句法路径上的注意力。
translated by 谷歌翻译
人工智能一直在全球转变产业和学术研究,研究软件开发也不例外。在研究软件开发生命周期的各个方面都应用了机器学习和深度学习,从新算法设计范例到软件开发过程。在本文中,我们讨论了我们对当今挑战和机会的看法,即AI在研究软件开发和工程师中展示了我们在佛罗里达大学的方法,正在为AI的新时代做好准备我们的劳动力。
translated by 谷歌翻译
红外小目标检测(ISTD)是重要的计算机视觉任务。 ISTD旨在将小目标与复杂的背景混乱区分开。红外辐射在距离上衰减,使目标高度变暗,容易与背景混乱混淆,这使得探测器具有挑战性,以平衡精度和召回率。为了解决这一困难,本文提出了一种基于神经网络的ISTD方法,称为CourtNet,该方法具有三个子网络:起诉网络旨在提高召回率;被告网络致力于提高精度率。陪审团网络加权他们的结果,以适应精确度和召回率。此外,起诉网络还利用了密集的连接变压器结构,这可以防止小目标在网络正向传播中消失。另外,采用细粒度的注意模块来准确定位小目标。实验结果表明,CourtNet在两个ISTD数据集(0.62)和SIRST(0.73)上达到了最佳的F1得分。
translated by 谷歌翻译
基于我们对红外目标的观察,沿着序列帧内的严重变化很高。在本文中,我们提出了一种动态的重新参数化网络(DRPN)来处理规模变化并平衡红外数据集中的小目标和大目标之间的检测精度。 DRPN采用不同尺寸的卷积内核和动态卷积策略的多个分支。具有不同尺寸卷积粒的多个分支有不同的接收领域大小。动态卷积策略使DRPN自适应重量多个分支。 DRPN可以根据目标的比例变化动态调整接收领域。此外,为了在测试阶段保持有效推断,在训练后通过重新参数化技术进一步将多分支结构转换为单分支结构。关于FLIR,KAIST和INFRAPLANE数据集的广泛实验证明了我们提出的DRPN的有效性。实验结果表明,使用所提出的DRPN作为基本结构而不是SKNET或TridentNET获得了最佳性能的探测器。
translated by 谷歌翻译
Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by L 2 normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. Extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmarks, which confirms the effectiveness of our proposed approach.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译